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Note: Part IT (negative correlation) should be read in conjunction with Part I (positive correlation) as all definitions
in Part I apply to Part II.

Part I defined two random variates X and Y that are pulled from the distribution of X and the distribution
of Y, respectively, and have a positive pairwise correlation of p,. These random variates were defined as follows...
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To pull normally-distributed random variates that have a negative correlation we will make a few changes to the
two equations above. The first thing that we will do is define a new correlation coefficient p,, to be the absolute
value of the actual negative pairwise correlation coefficient p,y. In equation form this definition is...
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We will now adjust equations (1) and (2) for negative correlation. The equations for the random variates with
negative correlation become...
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In the following section we will prove that the mean and variance of X and Y remain unchanged from Part I. We
will also prove that the pairwise correlation between X and Y is —pgy.

Proofs

Since equation (4) did not change from Part I the mean and variance of X also did not change. The mean and
variance of X are...
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The mean of Y is equal to {1y, which also did not change from Part I. This proof requires the result of the expectation
calculated in Appendix equation A.
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The variance of Y is equal to 037 which also did not change from Part I. This proof requires the results of the

expectations calculated in Appendix equations A and B.
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The correlation of X and Y did change from Part I as it is now negative. This proof requires the results of the
expectations calculated in Appendix equations A, B and C.
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Appendix
A) The expected value of Y is...
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B) The expected value of the square of Y is...
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C) The expected value of the product of X and Y is...
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